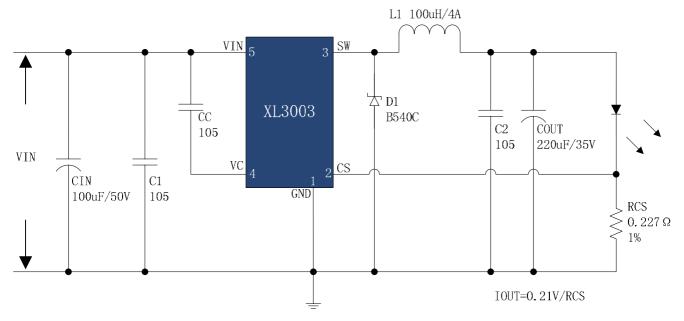


上海芯龙半导体技术股份有限公司

XL3003 DEMO board manual

版 本:1.0

页数:第1页,共5页


描述

221063A01 是为产品 XL3003 制作的演示板 , 用于 DC8V~36V 输入 , 输出电流 925mA 的降压 LED 恒流应用演示 , 最高转换效率可以达到 98%。

XL3003 是开关降压型 LED 恒流驱动芯片;固定开关频率 220KHz,可减小外部元器件尺寸,方便 EMC 设计。芯片具有出色的线性调整率与负载调整率,输出电流支持 0~3A 间任意调节。芯片内部集成过流保护、过温保护、短路保护等可靠性模块。

XL3003 为标准 TO252-5L 封装,集成度高,外围器件少,应用灵活。

DEMO 原理图

引脚介绍

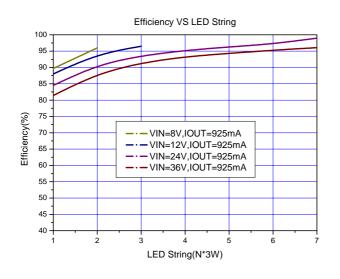
引脚号	引脚名称	引脚描述		
1	GND	接地引脚。		
2	CS	输出电流采样引脚,CS 参考电压为 0.21V。		
3	SW	功率开关输出引脚,SW 是输出功率的开关节点,金属片电气属性是 SW。		
4	VC	内部电压调节器旁路电容引脚,在典型应用中,需要在 VIN 与 VC 引脚之间连接 1 个 1uF电容。		
5	VIN	电源输入引脚,支持 8V 到 36V DC 范围电压输入,需要在 VIN 与 GND 之间并联电解电容以消除噪声。		

上海芯龙半导体技术股份有限公司

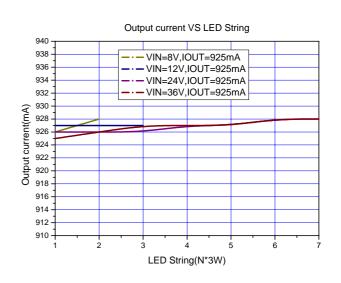
XL3003 DEMO board manual

版 本:1.0

页数:第2页,共5页


物料清单

序号	数量	参考位号	描述	料号	生产商
1	3	C1,C2,CC	1uF,50V,Ceramic,X7R,0805	C2012X7R1H105K	TDK
2	1	CIN	100uF,50V,Electrolytic,(8*11.5)	YXJ-50V-100uF	Rubycon
3	1	COUT	220uF,35V,Electrolytic,(8*11.5)	YXJ-35V-220uF	Rubycon
4	1	D1	40V,5A,SMC,Schottky Barrier Rectifier	B540C	Diodes
5	1	L1	100uH,4A,(18*9)		
6	3	RCS1~RCS3	0.68 ,1%,1/4W,Thick Film,1206	RC1206XR-07R680	Yageo
7	1	U1	36V,4A,BUCK,DC-DC Converter,T0252-5L	XL3003	XLSEMI


性能数据

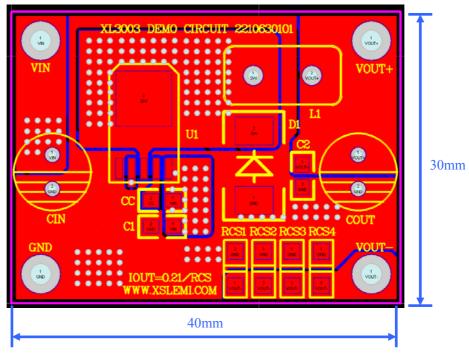
LED	VIN=8V				VIN=12V					
String	VIN(V)	IIN(A)	VOUT(V)	IOUT(A)	EFF(%)	VIN(V)	IIN(A)	VOUT(V)	IOUT(A)	EFF(%)
1	8.248	0.452	3.613	0.926	89.7	12.139	0.314	3.618	0.927	88.0
2	8.087	0.816	6.828	0.928	96.0	12.092	0.556	6.824	0.927	94.1
3	/	/	/	/	/	12.089	0.794	9.991	0.927	96.5
LED	VIN=24V				VIN=36V					
String	VIN(V)	IIN(A)	VOUT(V)	IOUT(A)	EFF(%)	VIN(V)	IIN(A)	VOUT(V)	IOUT(A)	EFF(%)
1	24.13	0.164	3.613	0.926	84.5	36.13	0.116	3.688	0.925	81.4
2	24.08	0.289	6.822	0.926	90.8	36.10	0.201	6.907	0.926	88.1
3	23.92	0.413	9.986	0.926	93.6	36.22	0.282	10.068	0.927	91.4
4	24.08	0.531	13.138	0.927	95.2	36.38	0.361	13.220	0.927	93.3
5	24.08	0.652	16.306	0.927	96.3	36.26	0.444	16.378	0.927	94.3
6	24.04	0.777	19.561	0.928	97.2	36.34	0.526	19.632	0.928	95.3
7	24.10	0.885	22.750	0.928	99.0	36.29	0.607	22.800	0.928	96.1

转换效率:

线性调整率和负载调整率:

上海芯龙半导体技术股份有限公司

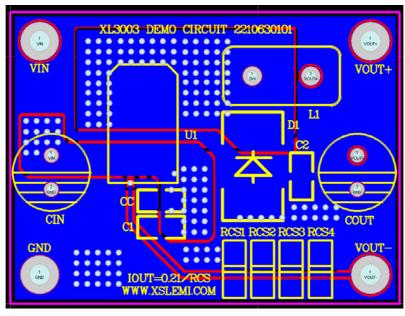
XL3003 DEMO board manual


版 本:1.0

页数:第3页,共5页

DEMO 实物图

PCB 布局



顶层

XL3003 DEMO board manual

版 本:1.0

页数:第4页,共5页

底层

应用信息

输入电容选择

在连续模式中,转换器的输入电流是一组占空比约为 VOUT/VIN 的方波。为了防止大的瞬态电压,必须采用针对最大 RMS 电流要求而选择低 ESR(等效串联电阻)输入电容器。对于大多数的应用, $1 \land 10$ uF 的输入电容器就足够了,它的放置位置尽可能靠近 XL3003 的位置上。最大 RMS 电容器电流由下式给出:

IRMS
$$\approx$$
IMAX* $\frac{\sqrt{VOUT(VIN-VOUT)}}{VIN}$

其中,最大平均输出电流 IMAX 等于峰值电流与 1/2 峰值纹波电流之差,即 IMAX=ILIM- IL/2。在未使用陶瓷电容器时,还建议在输入电容上增加一个 0.1uF 至 1uF 的陶瓷电容器以进行高频去耦。

输出电容选择

在输出端应选择低 ESR 电容以减小输出纹波电压,一般来说,一旦电容 ESR 得到满足,电容就足以满足需求。任何电容器的 ESR 连同其自身容量将为系统产生一个零点,ESR 值越大,零点位于的频率段越低,而陶瓷电容的零点处于一个较高的频率上,通常可以忽略,是一种上佳的选择,但与电解电容相比,大容量、高耐压陶瓷电容会体积较大,成本较高,因此使用 0.1uF 至 1uF 的陶瓷电容与低 ESR 电解电容结合使用是不错的选择。

输出电压纹波由下式决定:

VOUT IL*
$$\left(ESR + \frac{1}{8*F*COUT} \right)$$

式中的 F: 开关频率, COUT: 输出电容, IL: 电感器中的纹波电流。

电感选择

虽然电感器并不影响工作频率,但电感值却对纹波电流有着直接的影响,电感纹波电流 IL 随着电感值的增加而减小,并随着 VIN 和 VOUT 的升高而增加。用于设定纹波电流的一个合理起始点为 IL =0.3*ILIM,其中 ILIM 为峰值开关电流限值。为了保证纹波电流处于一个规定的最大值以下,应按下式来选择电感值:

XL3003 DEMO board manual

版 本:1.0

页数:第5页,共5页

$$L = \frac{VOUT}{F * IL} * \left(1 - \frac{VOUT}{VIN(MAX)}\right)$$

续流二极管

续流二极管建议使用肖特基二极管,比如 B540C。它的额定值为平均正向电流 5A 和反向电压 40V。5A 电流下典型正向电压为 0.55V。该二极管仅在开关关断期间有电流流过。峰值反向电压等于稳压器的输入电压。在正常工作时平均正向电流可计算如下:

$$ID(AVG) = \frac{IOUT(VIN - VOUT)}{VIN}$$

PCB 布局指南

- 1. VIN、GND、SW、VOUT 等功率线,粗、短、直;
- 2. FB 走线远离电感与肖特基等开关信号地方,建议使用地线包围;
- 3. 输入电容靠近芯片 VIN 与 GND 引脚。